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Abstract

Nanowire gas sensors have many applications in health-care, safety, environmental montoring etc.,
yet the major problem that current research faces is a lack of understanding of the reactions that
take place between the sensing film and the gas species and hence a substantial lack of selectivity
in SnO2 nanowire sensing devices.

We will present a mathematical model for SnO2 nanowire sensors. The surface reactions are
described by parameter-dependent ordinary differential equations (ODEs) that give the net ex-
change of electrons between the gas and the SnO2 nanowire. The net exchange of electrons is then
included in the nonlinear Poisson-Boltzmann equation for the computation of the electric poten-
tial. From the electric potential we obtain the concentrations of holes and electrons via Boltzmann
distributions and finally the graded channel approximation returns the current.

The parameters of 4 different ODE models for the surface reactions have been determined by
comparison of the ODE models with measurement data using inverse-modeling techniques. For
each of the models, between 5 and 9 parameters were estimated, while the nonlinear nature of the
model complicates inverse modeling. The results from the best parameter sets for each of the 4
models were compared, which also resulted in the affirmation of the hypothesis that chemisorption
at SnO2 nanowires is a slow process compared to the ionization reaction.

The equation corresponding to the affirmed hypothesis performs best compared to other model
equations in representing accurately the measurement curve. The components of the parameter set
are almost equilibrated and these factors are supported by the results of an F-Test used for the
statistical comparison of model equations. The simulation results are always within the range of 5%
with respect to the current measurements. Therefore this modeling procedure can yield predictive
simulations of field-effect gas sensors. This Master thesis was supported by the WWTF (Viennese
Science and Technology Fund) project No.MA09-028.
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Zusammenfassung

Nanowire Gassensoren können weitreichend angewandt werden, wie z.B. im Gesundheitsbereich,
Sicherheitsbereich, und der Umweltüberwachung. Das größte Problem welches Forscher beschäftigt
ist die mangelnde Selektivität und die mangelnde Kenntnis über die Reaktionen welche an der
Oberfläche des Gassensors auftreten.

Wir präsentieren in dieser Masterarbeit ein mathematisches Model für einen SnO2 Nanowire
Gassensor. Die Oberflächenreaktionen werden durch eine parameterabhängige gewöhnliche Differ-
entialgleichung (GDG) beschrieben. Diese liefert den Nettoaustausch zwischen dem auftretenden
Gas und dem SnO2 Nanowire. Dieser Nettoaustausch wird dann als Inputgröße im nichtlinearen
Poisson-Boltzmann Modell verwendet. Vom berechneten elektrischen Potential erhalten wir über
die Boltzmannverteilung die Konzentrationen der Löcher und Elektronen und schlussendlich liefert
die Graded Channel Approximation die Stromstärke I.

Die Parameter der 4 verschiedenen GDG Modellen für die Oberflächenreaktionen wurden bes-
timmt durch einen Vergleich der Modelle mit den Messdaten mithilfe von Inverser Modellierung-
stechniken. Für jedes Modell wurden zwischen 5 und 9 Parameter geschätzt, wobei die Nichtlin-
earität der Gleichungen den Schätzprozess verkompliziert. The Resultate von den besten Parame-
tersätzen wurden verglichen, welches zur einer Bestätigung der Hypothese dass die Chemisorption
auf SnO2Nanowires ein langsamer Prozess verglichen mit der Ionisierungsreaktion ist.

Die Gleichung der bestätigten Hypothese beschreibt verglichen mit den anderen Modellen am
Besten die Messkurve. Die Komponenten des Parametersatzes sind fast von gleicher Größe und
ein F-Test bestätigt die Superiorität der Modellgleichung. Die Simulationsresultate haben großteils
Abweichungen von weniger als 5 % bezüglich der Stromstärkemessung. Diese Masterarbeit wurde
unterstützt vom Wiener Wissenschafts- und Technologiefonds Projektnummer MA09-028.
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1
Introduction

Gas sensors (gas detectors) are devices that detect the presence of various gases, usually used
for safety reasons. In most cases those are battery operated, therefore making them flexible and
independent of the power supply. In industry they are either manufactured as portable or stationary
(fixed) units and in case of a high level of a certain gas, audible or visible indicators act as an
information tool. That means that if a gas passes a certain prespecified level, then an alarm will
inform the user about this occurence. While in earlier days, most gas sensors only detected one
gas, now they are often multi-functional devices, measuring a wide range of different gases [69].

The market for gas sensors will increase in size over the next decades due to stronger safety
regulations implemented worldwide, increasing enhancement of available technology and increasing
demand in the chemical industry as well as in the B2C sector, where in particular the medical sector,
household sector and fitness and wellness sector (integrated nanosensors in cell phones and sport
watches) show high potential according to a market study by WTC (Wicht Technology Consulting)
comissioned by AIT (Austrian Institute of Technology), see Figure 1.1, [80].
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Figure 1.1: Market potential for Nanosensors.

In general, one can distinguish, among others, between the following gas sensors:

• electrochemical sensors,

• metal Oxide Semiconductors,

• catalytic sensors,

• infrared sensors.

Among these are the electrochemical sensor and the metal oxide semiconductor sensors are the
most interesting ones.

• Electrochemical sensors are commonly used in the detection of toxic gases like CO (carbon
monoxide), Cl (chlorine), NO (nitrogen oxide). They work by oxidizing or reducing the target
gas at an electrode and measure the resulting current. A further characteristic is their high
sensitivity.

• Metal Oxide Semiconductors, (MOS) are used for the detection of toxic gases as well.
(most commonly for CO) and operate via a gas sensitive film, e.g., SnO2 (tin dioxide). The
sensitive film reacts with gases, which causes the device to trigger an alarm if toxic levels
are present. In general, MOS are very efficient due to their ability to work in low-humidity
ranges. Another advantage is their wide applicability, even being able to detect combustibles.

In this thesis a mathematical model for a nanowire gas sensor will be presented whose gas
sensitive film is composed of SnO2.
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Chapter 2 discusses the essential characteristics of the nanowire gas sensors. First the structure
of the whole measurement device is described and in the second part the surface reaction equations
are derived and presented.

In Chapter 3 we first present the mathematical theory behind parameter estimation, specif-
ically we discuss general optimization theory and then least squares optimization algorithms that
were used for the estimation of the parameter sets. In the second part, we present a uniqueness and
existence proof for the surface reaction equations. Furthermore, the nonlinear Poisson-Boltzmann
equation is introduced and two different proofs for the uniqueness of its solution are given.

In Chapter 4 we finally present the simulation results together with a statistical test in which
we show that one of the model equations represents the measurement data more accurately than
the other equations.
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2
Nanowire Gas Sensors

The structure of a metal oxide semiconductor is as given in Figure 2.1 and 2.2. On a silicon substrate
(ranging around 400 micrometer) there is a membrane attached, consisting of a membrane layer
(of silicon oxide), a heater resistor and thermometer resistor in the middle, and an insulating layer
(silicon dioxide (SiO2) or nitride (N3−)) on top, on which the sensing electrodes are positioned. The
membrane has a vertical diameter of about 1 to 2 micrometer(µm). Above the sensing electrodes,
there is a cover by a metal oxide film, where the surface reaction takes place [50, 17, 6], see Figure
2.3.

SnO2 film

Sensing Electrodes

Si Si

Membrane Layer

(SiO2)

Insulating Layer

(SiO2)

 ~ 1-2 μm

 ~ 400 μm

 ~ 1000 - 1.500 μm

Figure 2.1: Structural design of a modern semiconductor gas sensor.

This sensor chip (diameter around 1 to 1.5 mm) is then put on a device with connections to
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the technical device that measures the electric current and is responsible for calling alarm.

Si-Substrate

Source Drain

SnO2 nanowire

50 μm

Figure 2.2: Structure of a nanowire sensor.
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Figure 2.3: Model evolution of a metal-oxide gas sensor. On the top are the physical and chemical
processes changing the sensor signal, in the middle is the density of the surface ions, and at the
bottom is the sensor signal.
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2.1. TIN DIOXIDE

2.1 Tin Dioxide

Tin dioxide (SnO2) is an inorganic compound, whose mineral form is called cassiterite, the main
ore of tin [3]. The colourless, diamagnetic solid occurs naturally by burning tin in air, in particular
industrially it is reduced to tin with carbon in a reverbatory furnace burning at 1200 to 1300
degree Celsius [32]. A further important aspect is the fact that it is amphoteric and is as an
oxygen-deficient n-type semiconductor [43].

Figure 2.4: Electron-microscope picture of a nanowire produced at the Austrian Institute of Tech-
nology. Picture provided by courtesy of the NanoSystems group at the AIT.

2.2 Performance Parameters for Gas Sensors

The purpose of gas sensors is to measure concentrations of one or multiple components of gas
mixtures. Therefore, general requirements for the gas sensor are: sensitivity, selectivity, stability,
reliability, long lifetime, small size and low cost.

Among others, the literature often refers to the 6S-rule in relation to the desired properties,
which are Sensitivity, Selectivity, Speed of response, Stability, Size/Shape [28, 42].

The two most important properties, namely sensitivity and selectivity, are explained in the
following.

Sensitivity
The sensitivity S of a sensor is defined as the change of the electric resistance at the time of

reaction with the gas compared to the resistance when the sensor is in contact with reference gas

10



2.3. SURFACE REACTION MECHANISMS

only. For SnO2 in particular, the sensitivity is

S =
Rref
Rgas

(2.1)

for oxidizing gases (e.g., NO2 ) and

S =
Rgas
Rref

(2.2)

for reducing gases (e.g., CO).
In the literature, another definition of sensitivity

S :=
|Rgas −Rref |

Rref
(2.3)

is provided, which returns a better quantification and comparison of the performance of different
gas sensors [67], and this definition will be used in the following.

Selectivity The selectivity smn of a gas sensor is a value that compares the concentration of
the distorting substance m with the concentration of the desired analyte n that produces the same
sensor signal. This quantification can be achieved by dividing the sensitivity of the sensor with
respect to the distorting substance Sm by the sensitivity of the desired substance Sn, i.e., we define
the selectivity as

smn :=
Sm
Sn

(2.4)

2.3 Surface Reaction Mechanisms

Metal-oxide gas sensors are sensors whose working principle is based on the variation of the con-
ductance due to the presence of oxidizing and reducing gases. The conductivity variations occur
due to the interaction between the analyte molecules and the surface of the sensing material [1, 21].

There, adsorbed oxygen ions (O−2 , O−, O2−) act as surface acceptors binding electrons from
the conduction band of the material. On the other hand, reducing gases (CO) decrease the surface
oxygen concentration and result in a decrease of the sensor resistance.
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2.3. SURFACE REACTION MECHANISMS

CO2

SnO2  Nanowire

Silicone (Si) 
Substrate

Figure 2.5: A schematic diagram of the nanowire gas sensors considered in the model.

The major problem still being faced today is the low selectivity. A proposed method for im-
proving selectivity is to exploit the dependence of the sensor on the temperature [49, 80].

2.3.1 Response Model for a Mixture of a reducing Gas and Oxygen

Surface interactions as described above are complex and include different reactions [77, 71]. There-
fore, in order to arrive at a system of equations that describes the pattern, we need to perform some
simplifications. Hence, we will assume that the ionized oxygen O− is dominant on the tin-oxide
surface with respect to other oxygen species [9, 10, 34]. A first approach is to include three chemical
processes occuring on the surface. These are

• chemisorption:
1

2
O2 + S 
ka

k−a
O − S, (2.5)

• ionization:
O − S + e− 
kb

k−b
O−, (2.6)

• and the gas reaction of a reducing gas [77, 10]:

O− − S +R
kc−→ RO + S + e−. (2.7)

We assume that the concentration of the reducing gas [R], e.g. CO (carbon monoxide), is very low
compared to the oxygen concentration [O2] [10, 65].

12



2.3. SURFACE REACTION MECHANISMS

Notation Definition

[S] total adsorption site density
[O2] gas concentration

N ′S = [O−] ionized oxygen density
[O − S] = NO neutral adsorbed oxygen density

[R] concentration of the reducing gas
[RO] leaving reducing gas from surface
ka adsorption constant for oxygen chemisorption
k−a desorption constant for oxygen chemisorption
kb adsorption constant for oxygen ionization
k−b desorption constant for oxygen ionization
kc adsorption constant reducing gas
nS concentration of free electrons

Table 2.1: Notation to express reaction equations (2.9), (2.10), (2.11).

For the transformation of the reaction equations into differential equations we will make use of
the Law of mass action [45]:

Law of mass action: The rate of any given chemical reaction is proportional to the product of
the activities (or concentrations) of the reactants.

In mathematical terms this can be expressed for a general reaction

αA+ βB + . . .
 ρR+ τT + . . . (2.8)

via

forward reaction rate = k+[A]α[B]β . . .

backward reaction rate = k−[R]ρ[T ]τ . . .

where [A], [B], [R], [T ] are the active masses and k+, k− are the affinity constants [29].
Hence, the three processes can then be expressed by the following differential equations:

dNO

dt
= ka([S]−NO −N ′S)[O2]1/2 − k−aNO −

dN ′S
dt

(2.9)

N ′S
dt

= kbnSNO − k−bN ′S − kc[R]N ′S (2.10)

d[RO]

dt
= kcN

′
S [R] (2.11)

Equation (2.9) describes reaction equation (2.5) that the change in neutral adsorbed oxygen
density dNO

dt equals the adsorption at the unoccupied places [S]−NO−N ′S minus the desorption at
the already occupied places of NO and minus the change in the ionized oxygen density. Equation
(2.10) states in mathematical terms the reaction in (2.6) that the difference in the ionized oxygen
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2.3. SURFACE REACTION MECHANISMS

density is equal to the adsorption from the free electrons minus the desorption of the existing
occupied surface states and minus adsorption of the reducing gas. Finally, equation (2.11) represents
reaction (2.7) where the change in the leaving reducing gas is determined by the adsorption from
the surface.

The adsorption and desorption reaction constants play a fundamental role in those equations
and are therefore explained in detail in the following.

2.3.2 Adsorption Kinetics

The rate of adsorption Rads of a molecule can be expressed in various ways. One way to express it
is via the partial pressure of the molecule in the gas phase above the surface [58]:

Rads = kadsPα, (2.12)

where kads is the adsorption rate constant, P is the partial pressure and α is the kinetic order.
If the adsorption rate constant is expressed via the Arrhenius equation, then the kads can be

written in the form
kads = Ae−E

ads
a /kT (2.13)

where A is the pre-exponential factor, Eadsa is the activation energy for adsorption, kB is the
Boltzmann constant and T is the temperature.

Another way to express the rate of adsorption is given by taking the product of the incident
molecular flux F and the sticking probability St, meaning that Rads is governed by the rate of arrival
of molecules at the surface and the proportion of incident molecules which undergo adsorption [58].

Expressed in mathematical terms, we obtain

Rads = StF (2.14)

where the flux of incident molecules is given by the Hertz-Knudsen equation

F = P/(2πmkT ) (2.15)

where [F ] = molecules m−2s−1, P is the gas pressure, [P ] = Nm−2, m is the mass of one molecule,
[m] = kg and T is the temperature, [T ] = K.

2.3.3 Desorption Kinetics

Desorption is the process where ions from the surface are returned into the gas phase. In general, the
desorbing species is the same as that originally adsorbed assuming that there is no decomposition.
However, this is not always the case. For some alkali metals on metallic substrates exhibiting a
high work function at low coverages, the desorbing species is the alkali metal ion as opposed to the
neutral atom [58].

The rate of desorption Rdes is given by

Rdes = kdesNα, (2.16)

14



2.3. SURFACE REACTION MECHANISMS

where kdes is the desorption rate constant for the desorption process, N is the surface concentration
of adsorbed species and α is the kinetic order of desorption. The rate constant for the desorption
process can again be expressed in Arrhenius form

kdes = Ae−E
des
a /kT , (2.17)

where Edesa is the activation energy for desorption and A is the pre-exponential factor which can
also be interpreted as the attempt frequency at overcoming the barrier to desorption.

2.3.4 Derivation of Model Equations for the Surface Charge Density

We consider the equations (2.9), (2.10), (2.11) from Section 2.3.1. Those equations are a simplifi-
cation based on the following assumptions [1]:

1. Only the chemisorbed oxygen is anchored to the surface sites, but the physiosorbed oxygen
is not part of the electron exchange process.

2. The chemisorption process is a reaction of first order.

Furthermore, we distinguish between two different assumptions about the ionization reaction:
The first assumption (referred to as assumption A) is that the oxygen ionization is the rate-
determining step, which implies that the adsorbed neutral oxygen is always at steady state, i.e.
dNO
dt ≈ 0. The other assumption (referred to as assumption B) is that the chemisorption is a slow

process compared to the ionization reaction [76].

Assumption A

Under assumption A we have that dNO
dt = 0 and so the equations simplify to

0 = ka([S]−N steady
O −N ′S)[O2]1/2 − k−aNO −

N ′S
dt
, (2.18)

N ′S
dt

= kbnSN
steady
O − k−bNS − kc[R]N ′S , (2.19)

d[RO]

dt
= kcN

′
S [R]. (2.20)

If we further assume that the surface coverage is low, i.e.,
[Nsteady
O +N ′S ]

[S] � 1, then equation (2.18)
becomes

0 = ka[S][O2]1/2 − k−aNO −
N ′S
dt
. (2.21)

Using equation (2.19) the above equation is equivalent to

0 = ka[S][O2]1/2 − k−aN steady
O − (kbnSN

steady
O − k−bN ′S − kc[R]NS)

and from this we obtain

k−aN
steady
O + kbnSN

steady
O = ka[S][O2]1/2 + k−bN

′
S + kc[R]N ′S

15



2.3. SURFACE REACTION MECHANISMS

and so N steady
O is given by

N steady
O =

ka[S][O2]1/2 + k−bN
′
S + kc[R]N ′S

k−a + kbnS
. (2.22)

We assume that the reaction rate constants are in Arrhenius form [73, 75]

kj = kj0 exp

(
−Ej
kT

)
, (2.23)

where the parameters are the same as in (2.13).
Via substitution of the Arrhenius form we obtain

dNS

dt
= exp

(
−N2

S

T

)
A exp(−ω1

T ) +B exp(−ω2
T )NS

C exp(−ω3
T ) + exp(−N2

S
T )

−B exp
(
−ω2

T

)
NS−D exp

(
−ω4

T

)
NS , (2.24)

where

nS = ND exp

(
−

q2N ′2S
2kεdcε0NDT

)
,

N2
S =

q2

2εdcε0NDk
N ′2S ,

A = ka0[S][O2]1/2
q√

2εdcε0NDk
,

B = k−b0, C =
k−a0

kb0ND
, D = kc0[R],

ω1 =
Ea
k
, ω2 =

E−b
k
,

ω3 =
E−a − Eb

k
, ω4 =

Ec
k
.

The concentration of electrons nS is expressed by

nS = ND exp
(
−N2

S/T
)
, (2.25)

where we assume that in the considered temperature range all donors are ionized, therefore ND is
constant [34, 9].

T (K) 400 500 600 700

ND(1019) 1 11 58 260

Table 2.2: Values for ND as stated in [9].

If we further assume that the variation of ionized oxygen is negligible, then the chemisorbed
neutral oxygen can be represented as the equilibrium of the first reaction that is involved in the

sensing mechanism, i.e.,
N ′S
dt = 0, provided that we neglect the second reaction effect [1].
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2.3. SURFACE REACTION MECHANISMS

Therefore

N steady
O =

ka[S][O2]1/2

k−a
=
ka0[S][O2]1/2

k−a0
exp

(
−Ea − E−a

kT

)
(2.26)

and so we obtain the equation

dNS

dt
= A exp

(
−
N2
S + ω1

T

)
−B exp

(
−ω2

T

)
NS −D exp

(
−ω4

T

)
NS , (2.27)

where

A =
ka0

k−a0
[S]NDkb0

q√
2εdcε0NDk

,

ω1 =
Ea − E−a + Eb

k

and the other terms are as in equation (2.25).

Assumption B

If we suppose that the chemisorption is a slow process when compared to the ionization reaction,
then we make the following simplification [1]: We assume that the adsorbed oxygen concentration
is small in the interesting temperature range and observation time and modify equation (2.9) to

NO = Nox −N ′S , (2.28)

where Nox is the concentration of all the oxygen species on the surface, and is considered constant
in the model. So the whole system becomes

NO = Nox −N ′S , (2.29a)

NS

dt
= kbnSNO − k−bN ′S − kc[R]N ′S , (2.29b)

d[RO]

dt
= kcN

′
S [R] (2.29c)

and a similar derivation to the one in hypothesis A now leads to

NS

dt
= A exp

(
−
N2
S + ω1

T

)
−B exp

(
−
N2
S + ω1

T

)
NS − C exp

(
−ω2

T

)
NS −D exp

(
−ω4

T

)
NS ,

(2.30)
where

A = NoxNDkb0
q√

2εdcε0NDk
,

ω1 =
Eb
k
,

B = NDkb0

and the other parameters as in equation (2.25) [1].
For the models we now must estimate the parameters A,B,C,D, ω1, ω2, ω3, ω4 from the data.
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2.3. SURFACE REACTION MECHANISMS

Parameter A B C D ω1 ω2 ω3 ω4

Unit K1/2s−1 s−1 s−1 s−1 K K K K

Table 2.3: Estimation parameters and their corresponding units (K = Kelvin, s = seconds) [2].

We again consider the equation (2.25) that represents the relationship between the concentration
of free electrons nS and the occupied surface states NS . Due to the relation nS = Is

q where

I is the current, from the measurements I = 2.0 × 10−6 (s is seconds, assumed to be 1) and
q = 1.60217646× 10−19, the elementary charge, we are able to transform equation (2.25) into

NS =

√
−T log

(
nS
ND

)
. (2.31)

From this representation and the measurement values we are now able to obtain values for the
occupied surface states NS where a selection of values are represented in Table 2.4.

Time (s) NS Temperature (K)

1 84.720 453.15

1544 73.068 372.15

3396 73.068 373.15

5610 77.272 423.15

8171 85.083 462.15

11080 85.682 473.15

14310 92.618 523.15

17880 99.495 573.15

21832 105.990 623.15

26125 112.570 673.15

Table 2.4: Time and corresponding NS value for data provided by the AIT.

We will add in the equations (2.27), (2.30) and (2.24) another parameter K that accounts for
different reaction behaviors. Due to the complex interactions and sometimes random behavior of
chemical reactions, we might could also assume K to be a random variable, but this would go
beyond the focus of this thesis and is up to further research.

18



3
Theory

3.1 Theory of Optimization

Optimization problems can be expressed as finding

min
x
f(x)

s.t. x ∈ C ⊂ Rn

where f is the function to minimize, called objective function, and C is the set of constraints.
A local minimizer x∗ is an element x ∈ C with

f(x∗) ≤ f(x) (3.1)

for all x ∈ C ∩Bδ(x∗) for a δ > 0. x∗ is a strict local minimizer if there exists δ > 0, such that

f(x∗) < f(x) (3.2)

for all x ∈ C ∩Bδ(x∗). Furthermore, if

f(x∗) ≤ f(x) (3.3)

for all x ∈ C, then we call x∗ a global minimum.
We will use the following notation: e = x∗ − x is the error, en = x∗ − xn the error of the n-th

iterate, and B(r) the ball of radius r around x∗

B(r) := {x| ||e|| < r}.

The gradient of f is defined by ∇f(x) := (∂f/∂x1, . . . , ∂f/∂n) and the Hessian matrix of f
by Hf (x) := (∂2f/∂xi∂xj). We will assume that f is twice continuously differentiable, implying
symmetry of the Hessian, i.e., Hf = HT

f .

19



3.1. THEORY OF OPTIMIZATION

The normal Euclidean norm is denoted by ||x|| :=
√∑d

i=1 x
2
i and the matrix norm is given by

||A|| := sup
x 6=0

||Ax||
||x||

.

Definiteness of the matrix defined here is important for stating the optimality conditions of a
problem.

Definition 3.1.1. A d× d matrix A is positive semidefinite (psd) if xTAx ≥ 0 for all x ∈ Rd and
if there exists x 6= 0 such that xTAx = 0. A is called positive definite (pos def) if xTAx > 0 for all
x 6= 0. If there exist x, y ∈ Rd with xTAx > 0 and yTAy < 0, then A is called indefinite.

Another important property of a function is convexity:

Definition 3.1.2. A function f : Rd → R is called convex if for all x, y ∈ Rd and λ ∈ [0, 1] the
inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3.4)

holds.

Every linear function is convex and functions of the form f(x) = x2 are convex.

3.1.1 Optimality Conditions

Before giving a necessary condition for a minimizer, we prove a theorem that defines the notion
of a descent direction being later of prime importance for iterative methods as well as optimality
statements.

Theorem 3.1.3. Let f : Rd → R be differentiable at the point x̂. If there exists a vector p ∈ Rd
such that ∇f(x̂)T p < 0, then there exists ε > 0 such that f(x̂ + εp) < f(x̂) for all θ ∈ (0, ε). The
vector p is called a descent direction [12].

Proof. From differentiability of f , we have

f(x̂+ θp) = f(x̂) + θ∇f(x̂)T p+ o(θ).

Rearranging the terms and division by θ (θ 6= 0), we obtain

f(x̂+ θp)− f(x̂)

θ
= ∇f(x̂)T p+ o(1).

As ∇f(x̂)T p < 0 and o(1)→ 0 for θ → 0, there exists ε > 0 such that

∇f(x̂)T p+ o(1) < 0

for all θ ∈ (0, ε) and so
f(x̂+ θp)− f(x̂)

θ
< 0

implying f(x̂+ θp)− f(x̂) < 0.
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3.1. THEORY OF OPTIMIZATION

Remark: If ∇f(x) 6= 0 then we always obtain a descent direction by setting p := −∇f(x),
because ∇f(x)p = −∇f(x)T∇f(x) = − ||∇f(x)|| < 0.

Next we will prove a necessary condition for an optimal point without constraints.

Theorem 3.1.4. Necessary optimality condition for unconstrained optimization. Let
f : Rd → R be twice differentiable and x∗ a local minimizer of f . Then

∇f(x∗) = 0. (3.5)

Moreover, Hf (x∗) is psd [40].

Proof. Let v ∈ Rd, then we obtain from Taylor’s theorem that for sufficiently small s > 0

f(x∗ + sv) = f(x∗) + s∇f(x∗)T v +
s2

2
vTHf (x∗)v + o(s2).

As x∗ is a local minimizer we must have for sufficiently small s that

0 ≥ f(x∗ + sv)− f(x∗)

and hence
∇f(x∗)T v +

s

2
vTHf (x∗)v + o(s) ≥ 0

for all sufficiently small s > 0 and v ∈ Rd. Letting s→ 0 and v = −∇f(x∗) we obtain

||∇f(x∗)||2 = 0

Setting ∇f(x∗) = 0, dividing by s, and letting s→ 0, we find

1

2
vTHf (x∗)v ≥ 0

for all v ∈ Rd. This concludes the proof.

The condition ∇f(x) = 0 is called a first-order optimality condition and the condition Hf psd
is called a second-order optimality condition.

For general differentiable functions there does not exist a first-order sufficient optimality con-
dition. (Consider the function f(x) = x3; at x = 0 we have ∇f(0) = 0 but the function does
obviously not have a local minimum there.) So we need to resort to a second-order condition.

Theorem 3.1.5. Suppose f : Rd → R is twice differentiable at x∗. If ∇f(x∗) = 0 and Hf (x∗) is
positive definite, then x∗ is a strict local minimum.

Proof. First we have, for all x∗ ∈ Rd,

f(x) = f(x∗) +∇f(x∗)T (x− x∗) +
1

2
(x− x∗)THf (x∗)(x− x∗) + o(||x− x∗||2), (3.6)

where again o(||x− x∗||2)→ 0 for x→ x∗. We will prove the statement by contradiction. Assume
that x∗ is not a strict local minimum. Then there exists a sequence {xk} converging to x∗ such
that f(xk) ≤ f(x∗), xk 6= x∗, for each k.
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3.2. OPTIMIZATION ALGORITHMS AND THEIR IMPLEMENTATION

Set pk := xk−x∗
||xk−x∗|| , then we obtain from equation (3.6) that ∇f(x∗) = 0 and from f(xk) ≤ f(x∗)

that
1

2
(pk)

THf (x∗)(pk) + o(1) ≤ 0.

From ||pk|| = 1 for all k, we obtain an index set J ⊂ N such that {pk}J converges to p
where ||p|| = 1. Considering the subsequence and the fact that o(1) → 0 for k → ∞, we obtain
pTHfp ≤ 0. This implies a contradiction to our assumption that Hf (x∗) is positive definite since
||p|| = 1. Therefore, x∗ is a strict local minimum.

As f is twice continuously differentiable, we obtain that Hf (x) is positive definite in a ball B(ε)
for sufficiently small ε, and so f is strictly convex in an ε-ball around x∗. Therefore, x∗ is the global
minimum over Bε(x∗) because for any x ∈ Bε(x∗) holds f(x) = f(x∗) + 1

2(x−x∗)THf (x∗)(x−x∗) +

o(||x− x∗||2) > f(x∗) due to the positive definite of the Hf , which proves the statement. [12]

If we know that the function to minimize is convex, then we obtain the first-order sufficient
optimality condition stated below.

Theorem 3.1.6. Let f : Rd → R be convex and continuously differentiable. Then is x∗ a global
minimum if and only if ∇f(x∗) = 0.

Proof. If x∗ is a global optimum, then it follows from Theorem 3.1.4 that ∇f(x∗) = 0. Now assume
that ∇f(x∗) = 0. We first show that for convex differentiable f the inequality

f(x) ≥ f(y) +∇f(y)(x− y)

holds for all x, y ∈ Rd. From convexity of f , it first follows that

f(sx+ (1− s)y) ≤ sf(x) + (1− s)f(y)

and via rearrangement we obtain

f(y) +
f(sx+ (1− s)y)− f(y)

s
≤ f(x)

for s ∈ (0, 1). As this holds for all s ∈ (0, 1) so follows that for s→ 0 and the Taylor expansion of
f(sx+ (1− s)y) we have

f(y) +∇f(y)(x− y) ≤ f(x)

which shows the intermediate result. But if ∇f(x∗) = 0, then

f(x) ≥ f(x∗) +∇f(x∗)(x− x∗) = f(x∗)

for all x ∈ Rd and so x∗ is a global minimum.

3.2 Optimization Algorithms and their Implementation

The results and theorems provided in Section 3.1 are important for the qualitative and theoretical
analysis of optimization problems. However, finding points that satisfy the corresponding conditions
is a different business.
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In particular, almost all optimization algorithms will be iterative and so one solely approximates
the solution of an optimization problem. Therefore starting point, stability, direction of movement
and Jacobian and Hessian information are of utmost importance.

The idea of iterative algorithms is to choose a starting point x0 and an initial direction p0 in
order to get to a new point x1. One then repeats the procedure until the decrease in the function
value becomes smaller than a certain threshold.

Nevertheless, the concept of descent direction will again be important and while it is reasonable
to think that if one always goes in the opposite direction of the gradient of a function – this method
is called steepest descent – it will be shown that in practice it is quite often a very poor choice, i.e.,
it converges slowly.

The goal of this chapter is to introduce first the line-search and further the trust-region method,
which are vital for the optimization problem we consider in Section 3.3.

3.2.1 Line-Search Methods

The general idea behind line-search methods is to minimize for a given point xk and a direction pk
the function

f(xk + αpk) (3.7)

with respect to α.
Writing I(α) := f(xk + αpk), we have a necessary condition that I ′(α) = 0. As I ′(α) =

pTk∇f(xk + αpk), this implies that we have to solve pTk∇f(xk + αpk) = 0 [12].

Definition 3.2.1. A line-search method is called exact if the parameter is chosen such that the
function I(α) := f(xk + αpk) takes on a global minimum. Otherwise, we call the method inexact.

Generally, solving the last equation resorts to solving for the zeros of a nonlinear function,
being in most cases computationally very expensive. Moreover, in most cases the additional gain of
finding the global minimizing parameter α and a sufficient decrease parameter β is quite small, and
so one often resorts to an inexact line-search, among which the Armijo rule is the most significant
[12, 40].

Definition 3.2.2. The Armijo rule is to find a step size parameter α such that

f(xk + αpk) < f(xk) + θα∇f(xk)
T pk (3.8)

where θ ∈ (0, 1) is an algorithmic parameter [12]. For example J. Nocedal [59] suggests θ = 10−4.

3.2.2 Newton’s Method for Optimization

Newton’s method for optimization is an algorithm to find stationary points of function. It essentially
uses Hessian information for choosing its step sizes. For a comparison of Newton and Gradient
descent see Figure 3.1.

The idea behind it is the following: The second order Taylor expansion of a function f is given
by

f(xk + pk) = f(xk) +∇f(xk)pk +
1

2
pTkHf (xk)pk,
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3.2. OPTIMIZATION ALGORITHMS AND THEIR IMPLEMENTATION

where we set xk+1 − xk =: pk. Differentiating the function with respect to pk and setting ∇f(xk +
pk) = 0, we obtain

∇f(xk) +Hf (xk)pk = 0

and furthermore
xk+1 = xk − [Hf (xk)]

−1∇f(xk) (3.9)

assuming that Hf (xk) is invertible [54].

x0

Figure 3.1: A comparison the Newton method (in green) and Gradient descent (in red) for mini-
mizing a function. It can be seen that the Newton method essentially uses curvature information
in order to obtain a more direct route.

Newton methods have been extended to quasi-Newton methods where the Hessian is approxi-
mated via gradient information, because computing the Hessian is prohibitively expensive for large
optimization methods.

3.2.3 Trust-Region Methods

Despite the ease with which a line-search method is implemented, in general line-searches perform
quite poorly for non-convex functions resp. functions with non-semi positive definite approximate
Hessians [12]. Therefore, trust region methods overcome the problems that line-search methods
encounter with non-semi positive definite approximate Hessians.

The idea behind trust-region methods is the following: Let r be the radius of the ball around
xc where the quadratic model

mqc(x) = f(xc) +∇f(xc)
T (x− xc) +

1

2
(x− xc)THc(x− xc) (3.10)
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accurately represents the function f in the ball with radius r. We call r the trust-region radius and
the ball

B(r) = {x| ||x− xc|| ≤ r} (3.11)

is called the trust region.
We then proceed by minimizing mqc over B(r) in order to obtain a point x+, in mathematical

terms we try to find
min
τ∈B(r)

mqc(τ). (3.12)

Setting s := x+−xc, we then need to decide whether to accept the step and/or to change the trust
region radius. Intuitively, we would accept a step when f(x+) = f(xc + s) < f(xc) but we will see
that this condition can be generalized and made more flexible.

We will now state some conditions when to accept a step and when not. Define the actual
reduction of f by

Ract = f(xc)− f(x+) (3.13)

and the predicted reduction

Rpred = mqc(xc)−mqc(x+) = −∇f(xc)
T s− 1

2
sTHcs. (3.14)

trust region

Figure 3.2: Trust region.

We will further use the following three control parameters: λ0, λlow, λhigh where

λ0 ≤ λlow < λhigh. (3.15)

Now we consider the following cases [40]:

1. If Ract/Rpred < λ0, then the step should be rejected.
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2. If Ract/Rpred < λlow, then the trust region radius should be decreased.

3. If λlow ≤ Ract/pred ≤ λhigh, then accept the step and keep the current trust region radius.

4. If Ract/Rpred > λhigh, then the trust region radius should be increased.

The advantage of this approach over the former, where we would have accepted a step if

f(x+) < f(xc),

is that the quality of the quadratic approximation is also taken into account.
The contraction and expansion of the trust region radius are then obtained by multiplying r by

constants
0 < ωdown < 1 < ωup (3.16)

where typically ωdown = 1/2 and ωup = 2.
Nonlinear least squares problem usually make use of one of the following two algorithms:

• Trust-Region-Reflective,

• Levenberg-Marquardt method.

Trust-Region-Reflective Trust-Region-Reflective, also called subspace trust region method, is
a trust-region method that reduces the search space of the trust-region subproblem

min
||Ds||2≤r

(gTc s+
1

2
sTHcs) (3.17)

where D is a diagonal scaling matrix, gc is the gradient of f at xc, Hc the Hessian of f at xc and
r is the radius of the ball to a two-dimensional subspace S [36].

This is done because in general algorithms solving (3.17) involve the computation of a full
eigensystem and applying a Newton method to the equation

1

r
− 1

||s||2
= 0. (3.18)

The major problem of these algorithms is that they require time proportional to a large number
of factorizations of the Hessian Hc. Therefore, if the problem is higher dimensional, an approxi-
mation is needed, which is in our case a two-dimensional subspace [51, 63]. In particular, if the
two-dimensional subspace S is already computed then solving problem (3.17) is trivial. So the
major work now goes into the appropriate determination of the subspace S. For the trust-region
subproblem we define the two-dimensional subspace S as the linear space spanned by s1 and s2,
where s1 is the direction of the gradient gc and s2 is either

Hcs2 = −gc, (3.19)

or a direction with
sT2 Hcs2 < 0. (3.20)
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For the specific case of data fitting we consider the problem

min
x∈Rn

∑
i

fi(x)2 = min
x∈Rn

||F (x)||22 (3.21)

with

F (x) =

 f1(x)
...

fm(x)


where m corresponds to the number of data points. In order to determine the two-dimensional
subspace S, we will make use of an approximate Gauss-Newton direction s given as the solution of

min
s
||Js+ F ||22 .

Levenberg-Marquardt Algorithm (LMA) Consider the linear approximation of the function
(3.22) given by

F (xk + pk) ≈ F (xk) + J(xk)pk.

We want to minimize
||J(xk)pk + F (xk)||22

with respect to pk, therefore the minimizer is given by the solution of the normal equation

J(xk)
TJ(xk)pk = −J(xk)

TF (xk). (3.22)

Kenneth Levenberg [44] replaced equation (3.22) by a damped version

(J(xk)
TJ(xk) + λI)pk = −J(xk)

TF (xk), (3.23)

where I is the identity matrix and λ is a parameter that can be adjusted at each iteration such
that if the descent is rapid, then λ is chosen smaller and if we have insufficient descent then λ is
larger. That means that for small λ, the direction is close to Gauss-Newton direction, while if λ is
large then it is closer to the gradient descent direction.

Marquardt in 1963 realized that by scaling each component of the gradient according to the
curvature, there will be a larger movement along directions with small gradient [52]. The Levenberg-
Marquardt direction pk is then given as the solution of the equation(

J(xk)
TJ(xk) + λdiag(J(xk)

TJ(xk))
)
pk = −J(xk)

TF (xk) (3.24)

where again λ is chosen according to whether a close Gauss-Newton direction or a scaled version
of the gradient descent direction is desired [27].
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3.3. LEAST-SQUARES THEORY

3.3 Least-Squares Theory

Least squares is a standard approach in finding an approximation to an overdetermined system
of equations. It satisfies the condition that the sum of the square residuals becomes minimal. A
standard example of using least squares is the case of fitting a line to a given set of points, called
linear regression. This method still prevails in many application areas of business, economics,
biology, chemistry and engineering, where one wants to extract some information between the
variables on the x-axis and the y-axis [79].

In general, one can distinguish between linear least squares and non-linear least squares, de-
pending on whether the residuals are all linear in all unknowns or not.

• Linear least squares implies that the residuals are all linear in the unknowns. There is a
closed form for the solution and it occurs mostly in statistical regression analysis, meaning
that one has a set of data points and fits a function (usually a polynomial of degree 1, 2 or 3
where the optimization is performed over the set of all coefficients) to best approximate the
given data set. In particular this means that the problem can be reformulated into solving

Au = b, (3.25)

where u is the sought solution vector, A is the corresponding coefficient matrix, and b is a
vector of values.

• Nonlinear least squares implies that the residuals are not all linear in the unknowns. In
general, one does not have a closed form for the solution and needs to apply an iterative
procedure in order to obtain a solution. Furthermore, there might exist several minimums
and to find the global minimum might require high computational costs. In general, the
problem is only given in the form F (u) = y where F is the defining function and y is the
vector of values [72].

For the case of estimating parameters for the ODE’s governing the development of the density
of electrons, we are mostly concerned with non-linear problems and therefore will restrict the
discussion to non-linear least squares. In fact, all methods applied to the non-linear case are
applicable to the linear case as well, except that the direct methods applicable to linear problems
are in general much faster.

3.3.1 Nonlinear Least-Squares: Estimates and Convergence

Assume there is a given data set (xi, yi) for i = 1, . . . , n with a known functional relationship f
where

yi = f(xi, θ) + ri(θ), (3.26)

xi is a k × 1 vector, θ belongs the parameter set Θ ⊂ Rd, and the function f depends nonlinearly
on θ. Then nonlinear least squares problems are of the form

f(x) =
1

2

n∑
i=1

||ri||22 =
1

2
R(x)TR(x) (3.27)
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where the vector R = (r1, . . . , rn) is the residual vector.
If d is the number of parameters, then for the case n > d the problem is overdetermined, if d = n

we have a system of equations to solve (therefore standard numerical methods for the solution of
a system of equations can be applied, e.g., see [39]) and if d > n the problem is underdetermined.
The case of underdetermination is rare, nevertheless it is important for the solution of high-index
differential algebraic equations [68, 15].

If x∗ is a local minimizer of f and f(x∗) = 0, then the problem of minimizing f is called a
zero-residual problem. If f(x∗) is small, then the problem is called small-residual problem, and
otherwise it is called a large-residual problem.

The Jacobian of R is given by J and so

∇f(x) = JT (x)R(x) ∈ Rd. (3.28)

From the optimality condition in Theorem 3.1.4 we obtain that for a minimizer x∗ the equation

J(x∗)TR(x∗) = 0 (3.29)

holds. For the underdetermined case and if J(x∗) has full row rank, then R(x∗) must be zero.
This condition does not necessarily hold for the overdetermined case, therefore leaving a much

greater choice of values.
The Hessian of f can then be expressed via

Hf (x) = J(x)TJ(x) +

n∑
i=1

rTi Hri(x) (3.30)

which in particular requires the computation of n Hessians Hri , which is in practice too costly and
therefore needs to be approximated. Furthermore, we have

n∑
i=1

ri(x)THri(x) = R′′(x)TR(x)

where the second derivative R′′ of R is a tensor.

Gauss-Newton Method

For least squares problem, one is in general able to exploit the structure of the problem in order to
develop a more efficient algorithm for the solution of the minimum of the sum of squares. Gauss-
Newton is an algorithm that is focused on the minimization of the sum of the squares of functions
without requiring second derivatives, which are in many applications very expensive to compute
[25, 13].

The algorithm works as follows:

1. Choose an appropriate initial value x0 for the minimizer.

2. Iterate until ||p|| < δtol

(a) Compute the Jacobian Jk at xk.
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(b) Solve the normal equations
(JTk Jk)p = JTk r, (3.31)

where r is the vector of the residual functions ri.

(c) Update xk+1 = xk + p.

We will now state an error estimate for overdetermined problems.

Theorem 3.3.1. Let n > d and J(x∗) have full column rank. Then there exist C > 0 and ε > 0
such that for Bε(x∗) the error in the Gauss-Newton iteration satisfies

||e+|| ≤ C(||ec||2 + ||J(x∗)|| ||ec||). (3.32)

Proof. [40] Let ε > 0 such that ||x− x∗|| < ε implies J(x)TJ(x) is non-singular. Further let γ be
the Lipschitz constant for J . From (3.31) we obtain

e+ = ec − (J(xc)
TJ(xc))

−1J(xc)
TR(xc)

= (J(xc)
TJ(xc))

−1J(xc)
T (J(xc)ec −R(xc)).

Furthermore, we obtain

J(xc)ec −R(xc) = J(xc)ec −R(x∗) +R(x∗)−R(xc)

= −R(x∗) + (J(xc)ec +R(x∗)−R(xc)).

In particular,
||J(xc)ec +R(x∗)−R(xc)|| ≤ γ ||ec||2 /2

and from the optimality condition (3.29), i.e., J(x∗)TR(x∗) = 0, we get

−J(xc)
TR(x∗) = (J(x∗)− J(xc))

TR(x∗).

Therefore,

||e+|| ≤
∣∣∣∣(J(xc)

TJ(xc))
−1
∣∣∣∣ ∣∣∣∣(J(x∗)− J(xc))

TR(x∗)
∣∣∣∣

+

∣∣∣∣(J(xc)
TJ(xc))

−1
∣∣∣∣ ∣∣∣∣J(xc)

T
∣∣∣∣ γ ||ec||2

2

≤
∣∣∣∣(J(xc)

TJ(xc))
−1
∣∣∣∣ γ ||ec||( ||R(x∗)||+

∣∣∣∣J(xc)
T
∣∣∣∣ ||ec||

2

)
.

Setting

C := γ max
x∈Bε(x∗)

∣∣∣∣(J(x)TJ(x))−1
∣∣∣∣(1 +

∣∣∣∣J(x)T
∣∣∣∣

2

)
(3.33)

we obtain (3.32).
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A consequence from Theorem 3.3.1 is that for zero-residual problems, the term ||R(x∗)|| ||ec|| in
(3.32) vanishes and therefore the local convergence rate is q-quadratic. Furthermore for xc ∈ Bε(x∗)
we obtain ||e+|| ≤ δ ||ec|| for some δ ∈ (0, 1) if

C(ε+ ||J(x∗)||) ≤ δ

and therefore the q-factor equals C ||J(x∗)||. Although we cannot even guarantee q-linear conver-
gence for small and large residuals, Gauss-Newton will be fast for small residuals and good initial
data. For large residual problems however, Gauss-Newton unfortunately may not converge at all.

Consider again the overdetermined least-squares objective function

f(x) =
1

2

n∑
i=1

||ri(x)||22 =
1

2
R(x)TR(x).

Then the direction of steepest descent is the negative of the gradient, i.e.,

−∇f(x) = −J(x)TR(x) (3.34)

because the gradient of a function is the direction of steepest increase.
The Gauss-Newton direction at x is then given as in (3.31) by

p = −(J(x)TJ(x))−1J(x)TR(x) (3.35)

and for J having full column rank, we obtain

pT∇f(x) = −(J(x)TR(x))T (J(x)TJ(x))−1J(x)TR(x) < 0

which in particular implies that the Gauss-Newton direction is a descent direction. If we now choose
the step size parameter α such that

f(x+ αp) ≤ f(x) + cαpT∇f(x) (3.36)

and update x by αp, then we obtain the damped Gauss-Newton iteration [59]. In particular, damped
Gauss-Newton is Gauss-Newton together with the Armijo rule.

In general, damped Gauss-Newton is an effective algorithm when the matrices (J(xk)
TJ(xk))

have full column rank and are uniformly bounded and well conditioned, which is a very strong
assumption.

In order to make the algorithm applicable more widely, one adds a regularization parameter
λ > 0 to J(xc)

TJ(xc) to obtain x+ = xc + p, where

p = −(λcI + J(xc)
TJ(xc))

−1J(xc)
TR(xc),

I is the identity matrix, and λcI + J(xc)
TJ(xc) is positive definite. The parameter λ is the

Levenberg-Marquardt parameter (see (3.24)) and in order to obtain a more stable method, we
combine the Levenberg-Marquardt method with Armijo rule [27, 59].

We therefore obtain the following theorem:
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Theorem 3.3.2. Let J be Lipschitz continuous and xk be the Levenberg-Marquardt-Armijo iter-
ates. Suppose that ||J(xk)|| is uniformly bounded and that the sequence of the Levenberg-Marquardt
parameters λk is such that

λkI + J(xk)
TJ(xk) (3.37)

is bounded. Then
lim
k→∞

J(xk)
TR(xk) = 0 (3.38)

and for any limit point x∗ of {xk} at which R(x∗) = 0, J(xk) has full column rank and λk → 0,
then xk → x∗ q-superlinearly. If

λk = O(||R(xk)||) (3.39)

as k →∞ then the convergence is q-quadratic.

Proof. The interested reader referred to the book [40].

3.4 Qualitative Analysis of the Model Problem

This section deals with the theoretical investigation of the ordinary differential equations dNS
dt =

f(NS) used for the description of the development of the occupied surface states, stated in Section
2.3.4.

We will prove the Theorem of Picard-Lindelöf, which gives the uniqueness and existence of a
solution of the differential equation ẋ = f(t,x), and state then the assumptions on the coefficients
of our model equations in order to apply the theorem.

3.4.1 Uniqueness and Existence of the solution

In the following, the Theorem of Picard-Lindelöf is stated, which essentially uses the Banach fixed-
point Theorem.

Theorem 3.4.1. Banach fixed-point Theorem Let f : D ⊂ Rd → D ⊂ Rd, D complete with
respect to the Euclidean metric, be a contraction, i.e., there exists a constant c ∈ [0, 1) such that

d(f(x), f(y)) ≤ cd(x, y) (3.40)

for all x, y ∈ D. Then has f a unique fixed point.

Proof. The interested reader is referred to one of the books [19, 66, 11].

Theorem 3.4.2. Theorem of Picard-Lindelöf Let the function f(x,y) on the domain D :=
J × Rn, J = [x0, x0 + a] be continuous and fulfil in D a Lipschitz-condition with respect to y, i.e.,
there exists a constant L such that

|f(x,y)− f(x, ȳ)| ≤ L|y− ȳ| for all (x,y), (x, ȳ) ∈ D. (3.41)

Then the initial value problem (IVP)

y′ = f(x,y), y(x0) = y0 (3.42)

has a unique solution for all (x0,y0) ∈ D[78].
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Proof. The idea behind the proof is to reformulate the IVP into the form y = Ty. Then to show
that T is a contraction on an appropriate interval. Finally, use the Banach fixed-point Theorem
for uniqueness as well as for existence of the IVP because the solutions of the equation y = Ty are
exactly the solutions of the IVP.

We start out by using the fundamental theorem of Calculus and so

y′ = f(x,y), y(x0) = y0 (3.43)

implies that

y(x) = y0 +

∫ x

x0

f(t,y(t))dt, (3.44)

where x ∈ J = [x0, x0+a]. The equation y′ = f(x,y) implies that y(x) is continuously differentiable
for x ∈ J . On the other hand, continuous solutions of (3.44) in J solve the IVP y(x0) = y0.
Therefore, (3.42) and (3.44) are equivalent.

Therefore, we can write the IVP also in the form

y = Ty with (Ty)(x) := y0 +

∫ x

x0

f(t,y(t))dt (3.45)

and so the integral operator T assigns to each function y ∈ C(J) a function Ty from C(J).
Next, we want to apply the Banach fixed-point Theorem in order to show that T has a unique

fixed point that equals the unique solution of the IVP. Therefore, we need to show that T suffices
a Lipschitz condition with Lipschitz constant q < 1.

Norming the space C(J) with the maximum norm ||y|| = maxJ e
−2Lx|y(x)|, where |y(x)| =

maxi=1,...,n |yi(x)|, we obtain from (3.41)

||(Ty)(x)− (Tz)(x)|| = |
∫ x

x0

[f(t,y(t))− f(t, z(t))]dt| ≤
∫ x

x0

L
(
|y(t)− z(t)|e−2Lt

)
e2Ltdt

≤ L ||y− z||
∫ x

x0

e2Ltdt ≤ L ||y− z|| e
2Lx

2L
for y, z ∈ C(J). (3.46)

From (3.46) we have

max
x∈J
|(Ty)(x)− (Tz)(x)|e−2Lx = ||(Ty)− (Tz)|| ≤ L ||y− z|| 1

2L
=

1

2
||y− z|| . (3.47)

Summarizing we have now shown that the operator T is a contraction with contraction constant
q = 1

2 . From the Banach fixed-point Theorem follows now that the operator has a unique fixed
point and so the IVP (3.42) has a unique solution.

Using the above theorem, we can now prove the existence and uniqueness of a solution of the
ODE (4.3).

Corollary 3.4.3. Suppose f : D ⊂ R → R given by (4.3), where the parameters ωi are all non-
negative, the occupied surface state density function NS is C1 and bounded for all t ∈ [0,K] with
K > 0. Then the ODE

dNS

dt
= f(NS) (3.48)

has a unique solution for the initial value NS(0) = ρ0.
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Proof. First, we calculate

f ′(NS) = −2ANS

T
exp

(
−
N2
S + ω1

T

)
+

2B

T
exp

(
−
N2
S + ω1

T

)
N2
S

−B exp

(
−
N2
S + ω1

T

)
− C exp

(
−ω2

T

)
−D exp

(
−ω4

T

)
(3.49)

and set NS = ||NS ||∞.We find

|f ′(NS)| ≤ C1

∣∣∣∣2NS

T

∣∣∣∣+ C2

∣∣∣∣2N2
S

T

∣∣∣∣+ C3 ≤ L := C1

∣∣∣∣2NS

T

∣∣∣∣+ C2

∣∣∣∣∣2NS
2

T

∣∣∣∣∣+ C3 (3.50)

where

C1 :=

∣∣∣∣2AT
∣∣∣∣ ≥ ∣∣∣∣2AT exp

(
−
N2
S + ω1

T

)∣∣∣∣
C2 :=

∣∣∣∣2BT
∣∣∣∣ ≥ ∣∣∣∣2BT exp

(
−
N2
S + ω1

T

)∣∣∣∣
C3 := |B + C +D| ≥

∣∣∣∣B exp

(
−
N2
S + ω1

T

)
+ C exp

(
−ω2

T

)
+D exp

(
−ω4

T

)∣∣∣∣
From the mean value theorem we obtain that

|f(N1
S)− f(N2

S)| ≤ L|N1
S −N2

S |.

Hence f satisfies a Lipschitz condition on D and therefore applying Theorem 3.4.2 shows that the
solution exists and is unique.

3.5 Poisson-Boltzmann Equation

The Poisson-Boltzmann equation is a partial differential equation that describes the electrostatic
interactions between the molecules in ionic solutions. Ionic solutions are substances that contain
free ions. In particular, ionic solutions are a subgroup of electrolytes and comprise acids, bases,
and gases. The most common example for an ionic solution is salt placed in water, see Figure 3.3.
There the individual components then dissociate due to the thermodynamic interactions between
solvent and solute molecules [64].
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Cl-Na+

Sodium
Ion

Chloride
Ion

Ionic Bonds
Electrostatic Attraction

between two ions

Figure 3.3: Dissolution of water.

3.5.1 Theory of the Poisson-Boltzmann Equation

The Poisson-Boltzmann equation represents the base for the Gouy-Chapman double layer (interfa-
cial) theory and is also used in the modelling of implicit solvation, which approximates the effects
of the solvent on the structures and interactions of proteins, DNA, RNA and other molecules in
solutions of different ionic strengths. [16, 24]

The ionic strength I of a solution is a function of the concentration of all ions present in a
solution by

I =
1

2

p∑
j=1

ciq
2
i , (3.51)

where ci is the molar concentration of ion i (dimension: mol m−3) and qi is the charge number of
ion i.

3.5.2 Derivation of the Poisson-Boltzmann Equation from Debye-Hückel The-
ory

We split a domain Ω into three domains Ωint,Ωcen and Ωout. Ωint contains the molecule for which
we want to obtain the electrostatic potential. The outer region Ωout consists of the solvent with
the dielectric constant εout where we assume that the region contains mobile ions. The centered
region Ωcen is an exclusion layer around the molecule in Ωint where no mobile charges of the solvent
are present, but it has the same dielectric constant as region Ωout, i.e. εcen = εout. Further,
some solvent will also penetrate the region Ωint, so we have the non-unit dielectric constant εint.
For details about the specific assumptions and interrelations, the interested reader may refer to
[53, 18, 74].

Furthermore we assume that the electrostatic potential satisfies Gauss’s Law in all three regions,
i.e.

∇ · E =
ρ

ε
(3.52)
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where ∇· E is the divergence of the electric field E , ε is the permittivity and ρ is the charge density
[35]. Assuming that the electric field is conservative, i.e. ∇ × E = 0, we are able to rewrite the
equation in the form

∆Vreg(x) =
−4πρreg(x)

εreg

for each region Ωreg where reg = inn, cen, out [31, 18].
If the molecule is represented by a series of N charges qi at positions x ∈ Rd, d = 1, 2, 3 where

qi = yiq, yi ∈ R, i = 1, . . . , N , then the potential in region Ωint is given by

Vinn(x) =

N∑
i=1

qi
εint|x− xi|

.

By applying the Laplacian on both sides of the equation, we then have

∆Vinn(x) =

N∑
i=1

−πqi
εint

δ(x− xi),

where δ(x) is the Dirac delta distribution. For the centric region Ωcen we obtain

∆Vcen(x) = 0, (3.53)

where we assume that there are no mobile ions implying the density charge is zero.
An assumption of the Debye-Hückel theory is that the ratio of the concentration of one type

of ion near the molecule in Ωint to its concentration far from Ωint is given by the Boltzmann
distribution law

e
−W+(x)

kBT resp. e
−W−(x)

kBT , (3.54)

where kB is the Boltzmann constant, T is the temperature and W+(x) = qVout(x) resp. W−(x) =
−qVinn(x) is the work required to move an ion of type + or − from |x| =∞ (lim|x|→∞ V (x) = 0)
to the point x.

The Boltzmann distribution then yields

C+ = Ce
− qVout(x)

kBT resp. C− = Ce
+
qVout(x)
kBT

where we assume that C = C+ = C− far from Ωint.
We also obtain in the case of an 1 : 1 electrolyte the charge density at a point x in Ωout by

ρout(x) = C+q − C−q = Ce
− qVout(x)

kBT − Ce+
qVout(x)
kBT = −2Cq sinh

(
qVout(x)

kBT

)
.

In total, we get

∆Vout(x) = −4πρout(x)

εout
=

(
8πCq

εout

)
sinh

(
qVout(x)

kBT

)
(3.55)
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and relating C to the Debye-Hückel parameter c, see [14], we can then rewrite equation (3.55) in
the form

∆Vout(x) = c2

(
kBT

q

)
sinh

(
qVout(x)

kBT

)
. (3.56)

From a physical perspective, we expect the function V (x) at the interfaces of the regions as well
as the dielectric constant times the normal derivative , ε∇V (x) ·n, of the function to be continuous
where n is the unit outer normal vector [53].

From these assumptions we then obtain the following interface conditions: On ∂Ωinn:cen :=
Ωint ∩ Ωcen, we have

Vinn(x) = Vcen(x), εint∇Vinn(x) · n = εcen∇Vcen(x) · n (3.57)

and on ∂Ωcen:out := Ωcen ∩ Ωout we obtain

Vcen(x) = Vout(x), εcen∇Vcen(x) · n = εout∇Vout(x) · n. (3.58)

As above we assume that V (∞) = 0.
From these considerations we obtain the nonlinear Poisson-Boltzmann equation:

Definition 3.5.1. The nonlinear Poisson-Boltzmann equation (PBE) is a second order semi-
linear elliptic equation

−∇ · (A∇V ) + b(x, V ) = f in Ω, (3.59a)

V = hD on ΓD, (3.59b)

(A∇V ) · n + cV = hN on ΓN , (3.59c)

where Ω ⊂ Rd is a bounded region with boundary Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, b(x, V (x)) :
Ω× R→ R and b = c(x)2 sinh(V (x)) ∈ L2(Ω), f = C

∑N
i=1 ziδ(x− xi) ∈ L2(Ω) where zi ∈ [−1, 1]

and A : Rd → Rd × Rd, A = ε(x)I is uniformly elliptic and bounded, with coercivity factor γ and
bound constant C.

We will prove a uniqueness result for the solution of the nonlinear Poisson-Boltzmann equation
and, first need some definitions and theorems.

Definition 3.5.2. Gateaux-derivative The mapping F : D ⊂ H1 → H2 is called Gateaux- or
G-differentiable at u ∈ int(D) if there exists F ′(V ) ∈ L(H1,H2), called the G-derivative, such
that

lim
s→0

||F (V + sh)− F (V )− sF ′(V )(h)||
s

= 0 (3.60)

holds for any h ∈ H1. In particular, the linear operator F ′(V ) is unique [20].

Definition 3.5.3. The mapping F : D ⊂ H1 → H2 is called Frechet- or F-differentiable at
V ∈ int(D) if there exists F ′(V ) ∈ L(H1,H2), called the F-derivative, such that

lim
||h||→0

||F (V + h)− F (V )− F ′(V )(h)||
||h||

= 0 (3.61)

holds for any h ∈ H1. Again, the linear operator F ′(V ) is unique. [20]
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From the above definition it is clear that every F-differentiable function is also G-differentiable.
However, the reverse is not true: consider a Banach space B and a linear functional f defined on
B, which is discontinuous at x = 0. Set F (x) = ||x|| f(x). Then F (x) is Gateaux-differentiable at
x = 0 with derivative 0, because

||F (0 + sh)− F (0)− sF ′(0)(h)||
s

=
|| ||sh|| f(sh)||

s
= |s| ||h|| ||f(h)|| → 0 for s→ 0,

but F (x) is not Frechet-differentiable as the limit

lim
||x||→0

f(x)

does not exist [56].
The aim now is to prove the uniqueness and existence of the nonlinear Poisson-Boltzmann

equation (3.59a) via the minimization of a functional J : H → R. In order to refer to the Ekland-
Temam Theorem, that returns the existence of a local minimizer, we need to impose some conditions
on the functional, defined below:

The first condition is that of a proper functional, which means that the functional is not too
degenerated.

Definition 3.5.4. proper functional A functional J(·) is called proper if J 6≡ +∞ and J(u) >
−∞ for all u ∈ D.

The second condition is coercivity, which means that the functional cannot take on a minimizer
when it is very far away from the origin.

Definition 3.5.5. coercive functional A functional J(·) is called coercive if J(u) → ∞ when
||u|| → +∞.

The next definition revolves around lower semi-continuity, which turns out to be essential in
order for the minimum to be taken on by the to be minimized function.

Definition 3.5.6. lower semi-continuity A functional J(·) is called lower semi-continuous at
the point u ∈ D if for all s < J(u) there exists ε > 0 such that the inequality s < J(v) holds for all
v with ||v − u|| < δ.

An equivalent condition is, see [37],

J(u) = lim inf
v→u

J(v) = sup
ε>0

inf{J(v)| ||v − u|| < ε}. (3.62)

Next we introduce the notion of optimality, where we need to distinguish between the global
property and a local property [22].

Definition 3.5.7. Global minimizer A point V ∗ ∈ H such that J(V ∗) = minV ∈H J(V ) is called
a global minimizer.

Definition 3.5.8. Local minimizer A point V ∗ ∈ Ω ⊂ H is called a local minimizer if J(V ∗) =
minV ∈Ω J(V ).
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Important for relating the PBE to the functional J(·), we define the gradient mapping, which
states the relation of a minimizer V ∗ and the value of the G-derivative of J(·) at V ∗.

Definition 3.5.9. gradient mapping The mapping F : D ⊂ H → H is called gradient mapping
if for a G-differentiable functional J : D ⊂ H → R the equation F (V ) = J ′(V ) holds for all V ∈ D.

In particular to ensure that a local minimizer is also a global minimizer, we need the concept
of convexity.

Definition 3.5.10. Convexity The functional J : D ⊂ H → R is called convex if the inequality

J(λU + (1− λ)V ) ≤ λJ(U) + (1− λ)J(V ) (3.63)

holds for all V,U ∈ D and λ ∈ (0, 1) provided the right-hand side is defined.

Building on these definitions, we are able to state the Euler condition that formalizes the
relationship between minimizers and the gradient mapping.

Theorem 3.5.11. Euler condition For a G-differentiable functional J : D ⊂ H → R with
F (V ) = J ′(V ) for all V ∈ D and a local minimizer V ∗ of J(·), the equation F (V ∗) = 0 holds.

Proof. The interested reader may refer to the book [19].

Theorem 3.5.12. Ekland-Temam Theorem If J : D ⊂ H → R is a convex, lower semicontin-
uous, proper and coercive functional and D a non-empty closed convex subset of H, then J(·) has
a local minimizer V ∗ ∈ D.

Proof. For a proof see Proposition 1.2 in [22].

Theorem 3.5.13. The nonlinear Poisson-Boltzmann equation (3.59a) has a unique weak solution
V ∈ H1(Ω).

Proof. The idea is to transform the nonlinear PB equation (3.59a) into its weak form

A(V, v) + (N(V ), v) = F (v) ∀v ∈ H1
0 (Ω) (3.64)

where

A(V, v) =

∫
Ω
A∇V · ∇vdx, (3.65a)

(N(V ), v) =

∫
Ω
b(x, w + V )vdx, (3.65b)

F (v) =

∫
Ω
fvdx−A(w, v) (3.65c)

and the fixed known function w ∈ H1(Ω) has trace h = trw. Then we use the representation
(3.64) to define a convex functional J(.) and minimize it over the domain. The minimizer of the
functional J(.) satisfies, due to the Euler condition (Theorem 3.5.11), J ′(V ∗) = 0 and J ′(V ∗) =
A(V, v) + (N(V ), v) − F (v). But this implies that the minimum is a solution of the nonlinear
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PB equation. The uniqueness follows from showing the strict convexity of J(.), implying that the
minimizer V ∗ is unique and therefore the solution as well.

We start out by defining

r(x, y) :=
c(x)2

2

[
(ey − 1)ew(x) + (e−y − 1)e−w(x)

]
. (3.66)

In particular r(x, 0) = 0 and

r′(x, y) :=
∂r(x, y)

∂y
=
c2(x)

2
(eyew(x) − e−ye−w) = c2(x) sinh(w(x) + y) = b(x, w + y).

Defining the functional J(·) : H1
0 (Ω)→ R as

J(V ) :=

{
1
2A(V, V ) +

∫
Ω r(x, V )dx− F (V ), r(·, V ) ∈ L2(Ω) for V ∈ H1

0 (Ω),

+∞ r(·, v) /∈ L2(Ω) for V ∈ H1
0 (Ω)

(3.67)

we will show that the Frechet-derivative of J(·) satisfies for a local minimizer J ′(V ∗) = 0 equation
(3.67) and V ∗ solves the equation

(J ′(V ), v) = 0, for all v ∈ H1
0 (Ω). (3.68)

We can rewrite J(·) in the form

J(V ) =
1

2
A(V, V ) + (r(x, V ), 1)− F (V )

and consider

J(V + h)− J(V ) =

(
1

2
A(V + h, V + h) + (r(x, V + h), 1)− F (V + h)

)
−[

1

2
A(V, V ) + (r(x, V ), 1)− F (V ))] =

1

2
[A(V, h) +A(h, V ) +A(h, h)]+(

(r(x, u) + r′(x, u)h+ . . . , 1)− (r(x, V ), 1)
)

+ (F (V ) + F (h)− F (V ))

= A(V, h) + (r′(x, V ), h)− F (h) + 0(||h||2).

From this we obtain the Euler condition

find V ∈ H such that (J ′(V ), v) = A(V, v) + (N(V ), v)− F (v) = 0 ∀v ∈ H, (3.69)

where N(V ) = ∂R(x,V )
∂y = b(x, w+V ) represents the weak formulation of the nonlinear PB equation.

For showing that J(·) has a minimum V ∈ H1
0 (Ω), we will apply the Ekland-Temam-Theorem

(Theorem 3.5.12) which returns a local minimizer of the functional J . To apply the theorem, we
need to show that J(·) is proper, convex, lower semi-continuous and coercive on H1

0 (Ω).
From the definition of J(·) and the corresponding definition of R(x, y), we obtain that

J(V ) > −∞, for all V ∈ H1
0 (Ω).
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J is not identically equal to +∞ because, e.g., for V = 0 we have A(0, 0) = 0, r(x, 0) = 0, and
F (0) = 0 yielding J(0) = 0. Therefore J is a proper functional.

Next, we will show that J(·) is convex. First F is a linear functional, and from linearity

F (λV + (1− λ)U) = λF (V ) + (1− λ)F (U)

it follows that −F is trivially convex. From the uniform ellipticity of A we can deduce that
A∗(V ) = A(V, V ) is convex. This follows from

J(θ) = θTA(x)θ ≥ α|θ|2

and so
J ′′(θ) = A(x) ≥ α > 0,

which implies the convexity of J and in particular of A∗.
Therefore in order for J(·) to be convex, we need to show that r(x, y) is convex and the convexity

of r(x, y) is equivalent to the condition that if r :→ R is G-differentiable on a convex set C,

(r′(x, V )− r′(x, U))(V − U) ≥ 0 for all V,U ∈ K, for all x ∈ Ω

From
r′′(x, V ) = c2(x) cosh(w(x) + V ) ≥ 0, ∀V ∈ K

we have that r′(x, V ) = c2(x) sinh(w(x) + V ) is monotonically increasing. This implies that

sign(U − V ) = sign(r′(x, U)− r′(x, V ))

for all x ∈ Ω and U, V ∈ K and so r(·, V ) is convex for V ∈ K.
Now for R(V ) =

∫
Ω r(·, V )dx we obtain

R(λV + (1− λ)U) =

∫
Ω
r(x, λV + (1− λ)U)x ≤

∫
Ω

[λr(x, V ) + (1− λ)r(x, U)]x

= λ

∫
Ω
r(x, V )dx + (1− λ)

∫
Ω
r(x, U)dx = λR(V ) + (1− λ)R(U)

which implies that R(V ) is also convex as a function of V . So J(·) is a linear combination of
convex functions and therefore is itself convex on K. The proof of the lower semi-continuity can
be obtained from [33]. For the coerciveness of J(·), we see that we obtain for α = infΩw and
β = supΩw

r(x, V ) =
c2

2
[(eV − 1)ew + (e−V − 1)e−w] ≥ −c

2

2
[eβ + e−α] > −∞

and so ∫
Ω
r(x, V )dx ≥ −meas(Ω)

c2

2
[eβ + eα] > −∞.

Then we obtain from the uniform ellipticity and boundedness of the function ε(x) that

√
γ ||V ||H1(Ω) ≤ ||V ||A ≤

√
C ||V ||H1(Ω)
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for ||V ||A = A(V, V )1/2 =
(∫

ΩA∇V · ∇V dx
)1/2

.

Next we estimate

J(V ) =
1

2

∫
Ω
A∇V · ∇V dx +

∫
Ω
r(x, V )dx− F (V )

≥ γ

2
||V ||2H1(Ω) −meas(Ω)

c2

2
[eβ + e−α]− ||f ||L2(Ω) ||V ||L2(Ω) − C ||w||H1(Ω) ||V ||H1(Ω)

and as f respectively w are fixed and

lim
||V ||L2(Ω)→∞

||V ||2H1(Ω)

||V ||L2(Ω)

= lim
||V ||L2(Ω)→∞

||V ||2L2(Ω) + |V |2H1(Ω)

||V ||L2(Ω)

≥ lim
||V ||L2(Ω)→∞

||V ||L2(Ω) = +∞

holds, we obtain J(V )→ +∞ for ||V ||H1(Ω) → +∞, showing that J(·) is coercive on H1
0 (Ω).

The Ekland-Temam theorem (Theorem 3.5.12) now yields that there exists a minimizer V ∈
H1

0 (Ω) of J(·).
We have still to prove the uniqueness of the minimizer of J(·) and therefore the uniqueness of

the solution of the nonlinear PBE.
Assume that V1 and V2 are two solutions of (3.64) and define V − = V1 − V2 ∈ H1

0 (Ω). We
obtain

A(V1 − V2, v) + (N(V1)−N(V2), v) = 0 ∀v ∈ H1
0 (Ω)

and so from the monotonic increase of N(V ) in V , we find that (N(V1)−N(V2), V1 − V2) ≥ 0 for
v = V1 − V2 and so in order to satisfy (3.70) we must have A(V1 − V2, V1 − V2) ≤ 0.

On the other side, as A is uniformly elliptic, we have

A(V1 − V2, V1 − V2) = ||V1 − V2||2A ≥ 0.

Therefore, both equations can only hold if

||V1 − V2||A = 0

and that implies V1 = V2.

3.5.3 Poisson-Boltzmann Equation for Gas Sensor Simulations

In the following, we will discuss some of the properties originating from the version of the nonlinear
Poisson-Boltzmann equation considered for the nanowire gas sensor simulations. In the previous
section we have provided a proof for the general PBE via minimizing a functional. For this approach
we needed some theory from calculus of variations and optimization, in particular the Ekland-
Temam Theorem (Theorem 3.5.12) and the Euler condition (Theorem 3.5.11).

In the following section, we will provide a different proof for the PBE equation for gas sensors,
that uses the Leray-Schauder fixed-point Theorem together with an estimate for semilinear elliptic
equations. The advantage of this approach is that it does not require the deep theory of the calculus
of variation and provides a deeper insight in the specific form of the PBE for nanowire gas sensors.
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The nonlinear Poisson-Boltzmann equation for the use for gas sensors is the BVP

−∇ · (ε∇Ve) + qni(e
Ve/UT − e−Ve/UT )− qC = 0 in Ω (3.70a)

∇nVe = 0 on ∂ΩN (3.70b)

Ve = VD on ∂ΩD (3.70c)

where Ve is the equilibrium potential, UT is the thermal Voltage, q is the elementary charge, ni
intrinsic carrier density, C = N+

d − N−a + nS where N+
d is the donor concentration, N−a is the

acceptor concentration and nS the concentration of electrons from the surface equation.
Our goal is now to prove uniqueness for a solution of the above equation, therefore ensuring

that in the numerical calculation the solution does not oscillate between two or more solutions.
We need to start with an estimate for semilinear elliptic equations, then state the Leray-Schauder
fixed-point Theorem and finally we are able to prove uniqueness for the solution of equation (3.70a).

Theorem 3.5.14. Let v(x, y) be a solution of

F (x, y, u, vx, vy, vxx, vxy, vyy) = f(x, y) in D

v = h on ∂D.

Let w and W satisfy the inequalities

F (x, y,W,Wx,Wy,Wxx,Wxy,Wyy) ≤ f(x, y) ≤ F (x, y, wx, wy, wxx, wxy, wyy) (3.71)

in D and
w(x, y) ≤ h(x, y) ≤W (x, y) on ∂D. (3.72)

Assume that for each constant λ ∈ [0, 1], the function F is elliptic with respect to λw + (1 − λ)v
and (1− λ)v + λW in D, and that ∂F/∂v ≤ 0 in D. Then we have

w(x, y) ≤ v(x, y) ≤W (x, y) in ∂D. (3.73)

Proof. For a proof see the book [62], p.115.

Next, important for the proof of the lemma below, we need to state the Leray-Schauder fixed-
point Theorem, which plays a fundamental role in proving the existence of a solution in the lemma
below.

Theorem 3.5.15 (Leray-Schauder fixed-point Theorem ). Let B be a Banach space and T be a
compact mapping from B × [0, 1] into B such that T (x, 0) = 0 for all x ∈ B. Furthermore, assume
that there exists a constant C > 0 such that

||x||B < C (3.74)

for all (x, t) ∈ B × [0, 1] with x = T (x, t). Then the mapping T1 from B into itself given by
T1(x) = T (x, 1) has a fixed point [26].

Equipped with those two results, we are able to prove the following lemma.
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Lemma 3.5.16. Assume the following four conditions:

1. The function h(x, ψ) ∈ C1(Ω× R) is monotonically increasing in ψ for all x ∈ Ω.

2. a ∈ L∞(Ω) and there exists a constant c such that a(x) ≥ c > 0 holds for all x ∈ Ω.

3. There exist functions h˜(ψ) and h̃(ψ) with

h˜(ψ) ≤ h(x, ψ) ≤ h̃(ψ) ∀x ∈ Ω,∀ψ. (3.75)

4. The algebraic equations h˜(ψ̃) = 0 and h̃(ψ˜ ) = 0 have solutions ψ˜ and ψ̃.

Then there exists a unique solution ψ of the semilinear elliptic boundary-value problem

−∇ · (a(x)∇ψ) + h(x, ψ) = 0 in Ω, (3.76a)

∇nψ = 0 on ∂ΩN , (3.76b)

ψ = ψD on ∂ΩD, (3.76c)

and ψ ∈ H1(Ω) ∩ L∞(Ω). The solution ψ satisfies the estimate

min( inf
∂ΩD

ψD, ψ˜ ) =: ψ ≤ ψ(x) ≤ ψ := max(sup
∂ΩD

ψD, ψ̃), ∀ψ ∈ Ω̄. (3.77)

Proof. The proof of the lemma will proceed as follows:

1. Proof of uniqueness of solution.

2. Proof of estimate (3.77) if the solution exists.

3. Proof of existence.

(1) Suppose that ψ1, ψ2 ∈ H1(Ω) ∩ L∞(Ω) are two solutions. Define φ = ψ1 − ψ2, so φ solves the
boundary value problem

−∇ · (a(x)∇φ) + h(x, ψ1)− h(x, ψ2) = 0 in Ω, (3.78a)

∇nφ = 0 on ∂ΩN , (3.78b)

φ = 0 on ∂ΩD. (3.78c)

The equations can be rewritten as

−∇ · (a(x)∇ψ) + h(x, ψ1)− h(x, ψ2) = −∇ · (a(x)∇ψ) + ∂ψh(x, ψ̂(x))φ (3.79)

by using the mean-value theorem

h(x, ψ1)− h(x, ψ2) = ∂ψh(x, ψ̂(x))(ψ1 − ψ2).
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Since h increases monotonically we can deduce that ∂ψh(x, ψ̂(x)) ≥ 0, so applying the weak
maximum principle (see, e.g., [23]), which states that the solution takes on its maximum on the
boundary, implies that φ = 0. This shows the uniqueness of the solution.

(2) We apply now Theorem 3.5.14 to show that the estimate (3.77) is satisfied for a solution.
Set

w := ψ, (3.80a)

W := ψ. (3.80b)

We now need to show that the function

F (x, y, z, zx, zy, zxx, zxy, zyy) := −(−∇ · (a(x)∇ψ) + h(x, ψ))

is elliptic with respect to λψ + (1− λ)ψ and λψ + (1− λ)ψ where λ ∈ [0, 1].
We obtain z2

1∂s1F + z1z2∂s2F + z2
2∂s3F = 2a(z1, z2)z2

1 + 2a(z1, z2)z2
2 ≥ 2a

¯
(z2

1 + z2
2) > 0 for

z2
1 + z2

2 > 0, since a > 0 because a is uniformly elliptic.
This implies that ∂F/∂ψ ≤ 0 is satisfied due to the monotonicity of h(x, ψ) with respect to ψ.
Next we need to show that F (W ) ≤ 0 ≤ F (w). For ψ and ψ constant we get

F (W ) = F (ψ) = −h(x, ψ) ≤ −h(x, ψ̃) ≤ −h˜(ψ̃) = 0, (3.81a)

F (w) = F (ψ) = −h(x, ψ) ≥ −h(x, ψ˜ ) ≥ −h̃(ψ˜ ) = 0 (3.81b)

and so ψ ≥ ψ̃ and ψ ≥ ψ˜ .

From Theorem 3.5.14 we then obtain estimate (3.77).
(3) For ψ ∈ L2(Ω) define the cut function

ψK :=


−K, if ψ(x) ≤ −K,
ψ(x), if −K ≤ ψ(x) ≤ K,
K, if K ≤ ψ(x),

(3.82)

where K > 0. For ψ ∈ H1(Ω) ψK is in H1(Ω) as well as in L∞(Ω). Define K as follows

K := max(|ψ|, |ψ|).

Furthermore define the operator

M : L2(Ω)× [0, 1]→ L2(Ω), M(y, σ) = w, (3.83)

where w is the solution of the linear elliptic boundary-value problem

−∇ · (a(x)∇w) + σh(x, yK) = 0 in Ω, (3.84a)

∇nw = 0 on ∂ΩN , (3.84b)

w = σψD on ∂ΩD. (3.84c)
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Obviously, every fixed point φ1 of M(., 1), i.e. every φ1 with

M(φ1, 1) = φ1 (3.85)

that satisfies |φ1| ≤ K a.e. on Ω, is a weak solution of the original problem.
From the smoothness of f and ∂Ω, we obtain (see [60], p. 49, and for the regularity of the

solution of the elliptic BVP, [23])
φ1 ∈ C1(Ω).

Therefore the set

Ω+ := {x ∈ Ω|φ1 > K} ⊂ Ω

is open in Ω and the boundary ∂Ω+ consists of points x with either φ1(x) = K or x ∈ ∂Ω.
For Ω+ non-empty and x∗ ∈ Ω+, we define the maximal connected component of Ω+ containing

x∗ by Ω∗+. Then φ1|Ω∗+ solves the boundary-value problem

−∇ · (a(x)∇φ1) + h(x, φ1) = 0 in Ω∗+,

∇nφ1 = 0 on ∂Ω∗+ ∩ ∂ΩN ,

φ1 = φD on ∂Ω∗+ ∩ ∂ΩD,

φ1 = K on ∂Ω∗+\∂Ω.

From ψ ≤ K and therefore h(x,K) ≥ 0 due to 0 = h˜(ψ̃) ≤ h(x, ψ̃) ≤ h(x,K) and as

sup∂ΩD φD ≤ K, the constant φ̄1 := K is an upper solution of the last problem. But this im-
plies that φ1 ≤ K in Ω̄ and therefore Ω+ is empty. In a similar way can be shown that φ1(x) ≥ −K
in Ω̄.

Next, the operator

T : L2(Ω)→ L2(Ω),

y 7→ yK (3.86)

is continuous, because ||T (y)||L2 ≤ ||y||L2 and so

||T (x)− T (y)||L2 = ||xK − yK ||L2 ≤ ||x− y||L2

holds due to the lower and upper bound.
From the fact that the right side of (3.84a) depends continuously in L2(Ω) on (y, σ) ∈ L2(Ω)×

[0, 1], that solutions of linear elliptic equations in H1(Ω) depend continuously on right sides in
L2(Ω) and boundary data on H1(Ω), we obtain that the operator M is continuous.

Next, it will be shown that the range of M is a bounded set in H1(Ω). From regularity results
(see again [60, 23]) for the elliptic problem (3.84a), we obtain

||w||H1 ≤ C(||σh(., yk)||L2 + ||σwD||H1) ≤ C(|Ω|1/2 sup
x∈Ω̄

|h(x,K)|+ ||wD||H1)

because h is bounded as a function of x. From the Rellich-Kondrachev compactness theorem, we
know H1(Ω) ⊂⊂ L2(Ω) and the operator M is compact because the range of M is bounded.

Finally, the Leray-Schauder fixed-point Theorem (Theorem 3.5.15, also [61]) yields the existence
of a fixed point φ1 of M(., 1) and hence the existence of a solution of (3.76).
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Building on the above lemma, we are now able to prove the unique solution of the Poisson-
Boltzmann equation (3.70a) and an estimate for the solution.

Theorem 3.5.17. Let Ω ⊂ Rd be open, bounded, ε is uniformly elliptic and C ∈ L∞(Ω). Then the
Poisson-Boltzmann equation (3.70a) has a unique solution Ve ∈ H1 ∩ L∞(Ω). Furthermore, the
estimate

min( inf
∂ΩD

VD, UT sinh−1(
infΩC

2qni
)) ≤ Ve(x) ≤ max(sup

∂ΩD

VD, UT sinh−1(
supΩC

2qni
)) (3.87)

holds for all x ∈ Ω.

Proof. Set h(x, V ) := qni(e
V/UT − e−V/UT )− qC. Furthermore

∂V h(x, V ) = qni(e
V/UT + e−V/UT )/UT = (2qni/UT ) cosh(V/UT ) > 0 (3.88)

holds for all V ∈ R and the estimate

h˜(V ) := 2qni sinh(V/UT )− sup
Ω
C ≤ h(x, V ) ≤ 2qni sinh(V/UT )− inf

Ω
C =: h̃(V ) (3.89)

Solving for h˜(Ṽ ) = 0 and h̃(V˜ ) = 0 yields the L∞-estimates and Lemma 3.5.16 proves the

statement.

3.5.4 Graded-channel Approximation

The graded-channel (GC, also laterally asymmetric channel devices) approximation for the com-
putation of currents is an approximation to the current of electrons and holes in a semiconductor
where e.g., the electrostatic potential V is already known in a cross section [48, 4, 47, 30]. For a
discussion of graded-channel structures, see e.g., [38, 46].

The concentrations of electrons and holes are assumed to be given by Boltzmann distributions

p(x) = ni exp

(
−qV (x)− φ

kBT

)
, (3.90)

n(x) = ni exp

(
qV (x)− φ
kBT

)
(3.91)

where q > 0 is the elementary particle charge, ni > 0 the intrinsic charge concentration (for SnO2:
6 · 1017cm−3, see [41] ) of the semiconductor, and φ the Fermi Level. From the mass action law we
obtain that p(x)n(x) = n2

i [57].
Therefore, by knowing the electrostatic potential V in a cross section A normal to the direction

of the charge transport, we are able to find an approximation to the current I.
Considering the drift terms in the drift-diffusion equations we obtain

Jdrift
n + Jdrift

p = −qµnn∇V − qµpp∇V = qE(µnn+ µpp) (3.92)

where E = −∇V is the electric field.
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From this relation we obtain the approximation to the current I via

I =

∫ ∫
A
Jdrift
n + Jdrift

p dx dy = qE

∫ ∫
A
µnn(x, y) + µpp(x, y) dx dy, (3.93)

where the x- and y- directions span the cross section A and E is the electric field normal to the
cross section, which is assumed to be constant and given by the difference in the applied potentials
at the source and drain contacts divided by the length of the structure.
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4
Simulations

4.1 Numerical Solution of the Surface Equation

As discussed in Section 2.3, we will consider the three model equations (2.27), (2.30) and (2.24),
where we consider equation (2.27) with and without the terms representing the influence of CO.
Equation (2.24) provides from a theoretical point of view the most accurate picture. Nevertheless, a
lot of work has to be put into the correct estimation of the parameters due to inherent nonlinearity
of the functions.

The data used for the estimation were extracted from the measurements that the measurement
process is as follows: The current I is held constant at 2µA, the temperature increases at prespec-
ified points and from time to time there is a test gas added (in the underlying data CO). The
measurement device then measures the voltage within the nanowire and via Ohm’s law (IR = V )
we obtain the resistance [7, 5].
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Figure 4.1: Plot of the measured NS values and the Temperature profile on the surface. As can
been derived from equation (2.31) the NS values increase with increasing temperature.

Equation (2.27) and (2.24) represent assumption A (Section 2.3.4) that the oxygen ionization
is the rate-determining step [1]. Equation (2.30) represents assumption B (Section 2.3.4) that the
chemisorption is a slow process compared to the ionization reaction [1].

As indicated in Section 2.3.4, we included in all models an additional additive parameter K and
denote the models as follows:

1. FOPNC:
dNS

dt
= A exp

(
−
N2
S + ω1

T

)
−B exp

(
−ω2

T

)
NS +K, (4.1)

2. FOPC:

dNS

dt
= A exp

(
−
N2
S + ω1

T

)
−B exp

(
−ω2

T

)
NS −D exp

(
−ω4

T

)
NS +K, (4.2)

3. FIPC:

dNS

dt
= A exp

(
−
N2
S + ω1

T

)
−B exp

(
−
N2
S + ω1

T

)
NS−C exp

(
−ω2

T

)
NS−D exp

(
−ω4

T

)
NS+K,

(4.3)
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4. SPC:

dNS

dt
= exp

(
−N2

S

T

)
A exp(−ω1

T ) +B exp(−ω2
T )NS

C exp(−ω3
T ) + exp(−N2

S
T )

−B exp
(
−ω2

T

)
NS−D exp

(
−ω4

T

)
NS+K.

(4.4)

4.1.1 Results of Parameter Identification

The models FOPNC (4.1) and FOPC (4.2) fall short of modelling the main characteristics of the
measurement curve. In particular, the computed curve is almost linear which is reflected in the fact
that the first term A is the main control factor of the slope of the curve and the other parameters
can almost be neglected.

Parameters FOPNC FOPC

A 2.55E+003 9.97E+000

B 5.87E-005 5.54E-005

D 2.90E-010

K 4.79E-003 7.07E-003

ω1 3.54E+003 1.27E+003

ω2 3.54E+002 8.35E+000

ω4 6.40E-002

Table 4.1: The parameter values of the models FOPNC and FOPC.

In particular, it shows that the additional CO term in FOPC has no effect, as the pre-exponential
factor is only approximately 10−10.
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Figure 4.2: Computed values of the FOPNC model (4.1) versus the measured values.
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Figure 4.3: Computed values of the FOPC model (4.2) versus the measured values.

The most complex model SPC (4.4) shows its relation to the previous two models (FOPC &
FOPNC)1 by being again mostly dependent on the first factor A. In particular the fractional
term has no dramatic effect on the slope of the curve, since ω3 is very small, and the additional
exponential factor in the denominator is small compared to C exp(−ω3/T ).

Parameters of SPC

A 1.00E+000

B 7.21E-013

C 3.01E+001

D 5.56E-005

K 7.17E-003

ω1 4.22E+000

ω2 1.73E-003

ω3 1.18E-008

ω4 1.55E-003

Table 4.2: The fitted parameter for SPC (4.4).

Furthermore, the values yielded by the model are almost identical to those of the simplified
models.

1FOPC and FOPNC are derived from SPC. (see Section 2.3.4)
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Figure 4.4: Computed values of the SPC model (4.4) versus the measured values.

On the other hand, the FIPC model equation (4.3) provides a very accurate picture of the
development of the measured NS values and, in contrast to the other models, the CO term is of
relevance when computing the slope of the function.
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Figure 4.5: Computed values of the FIPC model versus the measured values. Except at the jumps,
FIPC describes very accurately the behavior of the measurements.

The computed curve approximates the measured curve after some time adjustment to the
temperature within an error range of 0 to 5%. The large errors occurring at the temperature
rise cannot be described accurately by just one model for the whole data, because it requires to
approximate a step function via a smooth function, which is in general very difficult.

Parameters of FIPC

A 1.68E+001

B 3.07E+002

C 1.00E+000

D 1.00E+000

K 6.87E-001

ω1 4.12E-001

ω2 6.64E+001

ω4 6.26E+001

Table 4.3: The parameter values for FIPC (4.3).
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A further indication of which model represents accurately the underlying measurements can be
derived from the difference in size of the parameters. FOPNC, FOPC and SPC show large differ-
ences of 108 or more within the parameter set, implying inability to represent the characteristics
of the measurement curve.

In Table 4.4 we have summarized the results for the estimation of the parameters.

Parameters

FOPNC FOPC FIPC SPC

A 2.55E+003 9.97E+000 1.68E+001 1.00E+000

B 5.87E-005 5.54E-005 3.07E+002 7.21E-013

C 1.00E+000 3.01E+001

D 2.90E-010 1.00E+000 5.56E-005

K 4.79E-003 7.07E-003 6.87E-001 7.17E-003

ω1 3.54E+003 1.27E+003 4.12E-001 4.22E+000

ω2 3.54E+002 8.35E+000 6.64E+001 1.73E-003

ω3 1.18E-008

ω4 6.40E-002 6.26E+001 1.55E-003

Table 4.4: Parameter set for the models FOPNC, FOPC, FIPC and SPC.

4.1.2 Interpretation and Computation of p-Value

When performing statistical tests, one would like to have some kind of measurement value that
indicates how strong his or her conviction is about the acceptance or reject of the hypothesis under
consideration. For this purpose, statisticians devised the p-Value that is the probability of obtaining
a test statistic at least as extreme as the one that was actually observed, assuming that the null
hypothesis is true [70]. This is in contrast to simple reject or do not reject statements, that do not
account for the degree of conviction.

A widely accepted interpretation - many papers published in scientific journals use such an
interpretation - is the following:

p-Value Interpretation

p < 0.01 very strong evidence against H0

0.01 ≤ p < 0.05 moderate evidence against H0

0.05 ≤ p < 0.10 suggestive evidence against H0

0.10 ≤ p little or no real evidence against H0

Table 4.5: An interpretation of the p-Value widely accepted in international journals [8].

The smaller the p-Value is, the stronger is the evidence against the null-hypothesis (H0). In
the above cases, the null-hypothesis is that the model FIPC is not more accurate than the models
FOPNC and FOPC [8].

In order to compute the p-Value, we make use of the F-test. First, we compute the F-ratio via

Fr :=
(SSA− SSB)/SSB

(dFA− dFB)/dFB
, (4.5)
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where SSA is the sum of squares for model A and SSB is the same for model B. dFA is the
degrees of freedom for model A and dFB is the same for model B. In our case, SSB represents the
sum of squares of FIPC and SSA respectively the other. The degree of freedom dF for the models
is computed as follows:

dF = # data points − # parameters (4.6)

A basic assumption when applying the F-ratio is that the sum of squares decreases when the
number of parameters increases, i.e., the degrees of freedom decrease. That implies that negative
F-ratios do not satisfy the basic assumption and the F-test is not applicable [55].

Model degrees of freedom sum of squares

FOPNC 23445 11.932690

FOPC 23443 11.932724

FIPC 23442 11.916773

SPC 23441 11.932725

Table 4.6: Degrees of freedom and residual norm of the models.

As can be extracted from Table 4.6, we are able to compute the F-ratios for FIPC versus
FOPNC and FIPC versus FOPC. A comparison of FIPC vs. SPC is not possible, because the SOS
of SPC is higher than that of FIPC implying that the corresponding F-ratio is negative. The higher
SOS given a larger number of parameters is the prime indicator, that the more complex models
falls short of reflecting the sensor behavior more accurately than FIPC.

F-ratio

FIPC vs. FOPNC 10.437357

FIPC vs. FOPC 31.378222

Table 4.7: Table of F-ratios computed for the respective model comparisons.

The corresponding p-Values (p = 1− F−1(Fr), where F−1 is the inverse of the F -distribution)
for the model comparisons are given in Table 4.8.

p-Value

FIPC vs. FOPNC 10−6

FIPC vs. FOPC 2.147 ∗ 10−8

Table 4.8: Table of p-Values.

Referring to Table 4.5, we are able to deduce that the assumption that FIPC is not better
than FOPC can be dismissed, and the corresponding assumption with respect to FOPNC can be
dismissed as well, because the value is below 0.01 implying a very strong evidence against H0, and
the equation does not account for the CO influx.

In total, FIPC represents best the measurements, followed by FOPNC, FOPC and SPC if we
rank them with respect to their sum of squares (see Table 4.6).
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4.2 Numerical Simulations of the Gas Sensors

After constructing a surface model for the surface reactions and the Poisson-Boltzmann model for
calculating the current, we now want to relate the results to measurements carried out at the AIT.
Our model consists of the following parts:

Given the concentration of electrons on the surface from the surface model, we use the non-
linear Poisson-Boltzmann equation (3.70a) in order to compute the electric potential for a given
temperature (in our case 400 degree Celsius).

Nanowire

Figure 4.6: Schematic diagram of the simulation domain for the nonlinear Poisson-Boltzmann
equation. On three sides we assume zero Neumann boundary conditions and on one side Dirichlet
zero boundary conditions.

Discretizing, the solution of the Equation (3.59a) corresponds to finding the zero of the function

F (V ) := AV + f(V )− C (4.7)

where A possesses the pentadiagonal form shown in Figure 4.2,

58



4.2. NUMERICAL SIMULATIONS OF THE GAS SENSORS

Figure 4.7: Sparsity structure of matrix A upon discretizing the Poisson-Boltzmann equation.

The results of the simulations and their interpretation are given below:
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Figure 4.8: Comparison of simulated current to the pre-specified current used for the measurements
at AIT.
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Figure 4.9: Deviation of the simulated current to the pre-specified current.

The corresponding data are given below:
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Time (s) Voltage
(V)

Simulated
Current,
SC (µA)

Current,
C (µA)

Deviation
(SC to C)
in %

9841 0.1221 2.0563 2.0000 2.82

10644 0.1230 2.0703 2.0000 3.51

11469 0.1234 2.0782 2.0000 3.91

12317 0.1226 2.0641 2.0000 3.21

13190 0.1209 2.0360 2.0000 1.80

14086 0.1202 2.0234 2.0000 1.17

15007 0.1197 2.0158 2.0000 0.79

15952 0.1179 1.9844 2.0000 -0.78

16926 0.1176 1.9796 2.0000 -1.02

17919 0.1177 1.9818 2.0000 -0.91

18989 0.1145 1.9273 2.0000 -3.64

20035 0.1167 1.9647 2.0000 -1.77

21097 0.1196 2.0143 2.0000 0.72

22186 0.1215 2.0451 2.0000 2.26

23304 0.1277 2.1507 2.0000 7.54

Table 4.9: Data table of the simulated current compared to measured current.

Table 4.2 shows that the simulated current deviates by less than 4% from the measured current
for the time between 9.841 and 22.186 seconds and only at the end deviates by a larger factor.
Specifically, the simulated current overestimates the measured current up to 15.500 s and then
slightly underestimates it up to around 20.500 s.
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5
Appendix

5.1 Matlab Code

For this Master thesis were written about 8.000-10.000 lines of code in Matlab. In particular, a
least squares optimizer for the parameter estimation and a nonlinear Poisson-Boltzmann solver for
the Poisson-Boltzmann model were implemented. The most important files are described below:

lsqOptimizer.m Least squares optimization routine that is
adapted to each equation.

Rk4AIT.m Runge-Kutta 4 routine for the solution of the
reaction kinetics equations.

constrAFNonLinNeuDir2D.m Sets up the matrix A in equation (4.7) and a
vector that contains the other entries not de-
pendent on the potential V

SolvingNonLinPB.m Solves the zero finding problem F (V ) = 0 for F
as in (4.7).

currentGradChanApprox.m Computes the current I from the potential pro-
vided by SolvingNonLinPB.m
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